
Allison Ferguson, Zhirong Liu and Hue Sun Chan*

It has come to our attention that the no-desolvation-barrier (no-db) folding rates in Wallin and Chan¹ that we have used were given in a unit different from the with-desolvation-barrier (with-db) folding rates that we simulated.² This information should be noted. As a result, Fig. 3b and its legend should be replaced with the revised version below. As shown in the revised figure, the data are consistent with a single front factor \(F = 10^{-5} \) (in units of the reciprocal of the number of simulation time steps) for both the no-db models and the with-db models. If linear regression is performed separately on the two sets of models, the front factor for the no-db models becomes \(F^{(n)} = 9.0 \times 10^{-6} \), whereas the front factor for the with-db models remains unchanged at \(F^{db} = 1.7 \times 10^{-5} \). Other conclusions of our article² are not affected. We thank Dr. Stefan Wallin for discussion regarding the time unit used by Wallin and Chan.¹

References

Fig. 3. (b) The free-energy barrier height \(\Delta C^1 \) (in units of \(k_B T \)) versus the logarithmic midpoint folding rate \(k_{f}^{sim} \) determined from simulations of the with-db models (filled circles) and no-db models (open squares) of the 13 proteins that we studied. The straight line was determined from a linear regression with correlation coefficient \(r = 0.98 \). The \(x \)-intercept of the straight line provides the preexponential (front) factor in Kramers theory, \(F = 10^{-5} \), for both the with-db models and the no-db models. Data for the no-db models were adapted from Fig. 4 of Wallin and Chan¹ (cited as Ref. 27 in Ferguson et al.²). The time unit used by Wallin and Chan¹ was 100 simulation time steps. For a comparison of the with-db and no-db models on equal footing, the time unit for folding rates in the present figure is given by the number of simulation time steps for both the with-db models and the no-db models.

*Corresponding author. E-mail address: chan@arrhenius.med.utoronto.ca.