Theoretical Insights into the Biophysics of Protein Bi-stability and Evolutionary Switches

Tobias Sikosek, Heinrich Krobath, Hue Sun Chan*

Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada

* chan@arrhenius.med.toronto.edu

Abstract

Deciphering the effects of nonsynonymous mutations on protein structure is central to many areas of biomedical research and is of fundamental importance to the study of molecular evolution. Much of the investigation of protein evolution has focused on mutations that leave a protein’s folded structure essentially unchanged. However, to evolve novel folds of proteins, mutations that lead to large conformational modifications have to be involved. Unraveling the basic biophysics of such mutations is a challenge to theory, especially when only one or two amino acid substitutions cause a large-scale conformational switch. Among the few such mutational switches identified experimentally, the one between the GA all-α and GB α+β folds is extensively characterized; but all-atom simulations using fully transferable potentials have not been able to account for this striking switching behavior. Here we introduce an explicit-chain model that combines structure-based native biases for multiple alternative structures with a general physical atomic force field, and apply this construct to twelve mutants spanning the sequence variation between GA and GB. In agreement with experiment, we observe conformational switching from GA to GB upon a single L45Y substitution in the GA98 mutant. In line with the latent evolutionary potential concept, our model shows a gradual sequence-dependent change in fold preference in the mutants before this switch. Our analysis also indicates that a sharp GA/GB switch may arise from the orientation dependence of aromatic π-interactions. These findings provide physical insights toward rationalizing, predicting and designing evolutionary conformational switches.

Author Summary

The biological functions of globular proteins are intimately related to their folded structures and their associated conformational fluctuations. Evolution of new structures is an important avenue to new functions. Although many mutations do not change the folded state, experiments indicate that a single amino acid substitution can lead to a drastic change in the folded structure. The physics of this switch-like behavior remains to be elucidated. Here we develop a computational model for the relevant physical forces, showing that mutations can lead to new folds by passing through intermediate sequences where the old and new folds occur with varying probabilities. Our approach helps provide a general
physical account of conformational switching in evolution and mutational effects on con-
formational dynamics.

Introduction

The role of protein biophysics is increasingly recognized in the study of evolution, and the study of protein biophysics has also benefitted from evolutionary information [1–4]. Emerging from a more physical perspective of molecular evolution is the realization that natural selection can act on a nonsynonymous mutation as long as it modifies the conformational distribution, even if it leaves the folded structure of a protein unchanged and maintains the original biological function. For instance, if the mutation stabilizes a nonnative “excited” conformational state which is structurally distinct from native, this state can potentially serve an additional “promis-
cuous” biological function which is then subject to natural selection [5]. This effect, demon-
strated experimentally [6], is a direct consequence of the ensemble nature of protein
conformations and follows simply from the principle of Boltzmann distribution [7,8]. Simi-
larly, even if the most stable structure of a protein is robust against a mutation, the protein’s functional structural dynamics can be modulated by the mutation, which should then also be subjected to natural selection [5,9]. In this way, positive selection of an excited conformational state favors mutations that gradually increase the stability of the excited state, so that it finally becomes the new dominant native structure or one of two (or more) native structures with comparable stabilities in a “bi-stable” (or “multi-stable”) protein. Protein sequences interconnected by mutations and encoding for the same folded structure form neutral networks [10]. Bi-stability was predicted to occur at the intersection of neutral networks [8,10].

Consistent with theory [7,8,11–14], some phylogenetically reconstructed ancestral proteins are bi-stable [15]. Although there is no direct measurement to date of a gradually shifting con-
formational equilibrium for a set of naturally occurring amino acid sequences traversing two neutral networks, recent advances in NMR spectroscopy allow mutational changes in the sta-
bility of nonnative excited states to be detected [16]. A handful of conformational switches and bi-stable sequences have now been designed in the laboratory [17–19]. Among them, the one that is most extensively characterized is the set of designed mutant sequences that span the human serum albumin-binding and IgG-binding domains of Streptococcus protein G [19,20]. The wildtype sequences of these proteins, termed GAwt and GBwt respectively, are of equal length (56 residues) in the experimental system. GAwt and GBwt have only 16% sequence identity with very different folded structures. GAwt folds to a three-helix bundle (3α), whereas folded GBwt is a helix packing against a four-stranded β-sheet (4β+α). By carefully selecting amino acid substitutions, Alexander et al. created mutant sequence pairs with 30%, 77%, 88%, 95%, and 98% identity while still maintaining the original different folds. A single L45Y substi-
tution separates the pair of mutants GA98 and GB98 with 98% identity. L45Y switches the dominant fold of GA98 from that of GA (3α) to that of GB (4β+α) for GB98 [19,20]. As sug-
gested by theory [7,8] and by molecular dynamics simulations of the unfolded states of the GA88/GB88 pair [21], appreciable excited-state populations for the alternative fold should be present in the GA/GB mutants with 95%, 88%, or even 77% identity. Ligand binding data pro-
vide evidence that GA98 and another mutant GB98-T25I that also adopts the 3α GA fold have excited-state populations of the alternative GB fold. However, GB98-T25I is the only mutant for which the alternative fold is directly observable by NMR [22], as nonnative populations lower than ~1% are currently difficult to detect experimentally. By simulating the folding energy landscapes of the mutants, the goal of the present computational analysis is to gain
physical insights into the mechanism of the G\textsubscript{A}/G\textsubscript{B} conformational switch, including how it might evolve via a gradual increase in stability of the alternate fold as the mutants approach the switch.

The most direct method of molecular simulation is to use a completely general physics-based potential. Such an approach has succeeded recently in showing that it is computationally possible for a series of mutants of a 16-residue peptide to undergo an \(\alpha\) to \(\beta\) switch [14]. Owing perhaps to the limitations of molecular dynamics forcefields [23,24], folding simulations with fully transferrable potentials have not reproduced much of the switching behavior of the larger G\textsubscript{A}/G\textsubscript{B} system [25,26], although complementary theoretical methods have made useful progress. For instance, some of the GA/GB mutants can be assigned to their correct native folds by various threading approaches [8,27] or a “confine-and-release” simulation algorithm applied to the GA88/GB88 and GA95/GB95 pairs [28], suggesting that the forcefields used in these techniques may be quite adequate. But the conformations sampled by these techniques are limited only to those very similar to the G\textsubscript{A} and G\textsubscript{B} folded structures [8,27], or at best include also a highly confined set of conformations between them [28]. As such, the rather restricted conformational sampling in these techniques can mask possible shortcomings of the forcefields, e.g., by missing low-energy conformations that the techniques fail to sample. Therefore, to address fundamental physics of the G\textsubscript{A}/G\textsubscript{B} system, as for any protein folding study, it is necessary to employ self-contained explicit-chain models that extensively sample both the folded and unfolded conformations [29].

One class of self-contained models proven useful in biomolecular studies is the G\(\bar{\text{o}}\)-like explicit-chain structure-based models (SBMs). These models are native-centric in that the only contacts favored by the potential are those that exist in the known native structures [29–32]. Most SBMs studied to date are single-basin in that they target a single native structure; but dual- and multi-basin SBMs can be constructed to fold to two or more native structures. The latter approach has been employed to analyze the conformational switches between different functional states of a protein [33–36]. A prime example is the large-scale allosteric conformational transition between the open and close forms of adenylate kinase [34,37]. Recent applications of dual-basin all-atom SBMs to the G\textsubscript{A}/G\textsubscript{B} system suggest that the conformational preferences of some of the mutants can be rationalized to an extent by their differences in steric packing [38,39]. However, the effects of nonnative interactions that are not present in either the G\textsubscript{A} or G\textsubscript{B} folds are not considered in these SBMs; but nonnative interactions are important for protein evolution because they may lead to detrimental aggregation [40–42]. In any event, the extent to which these dual-basin SBMs are generalizable is not clear. They have only been applied to a small number of mutants, viz., GA95/GB95 and GA98/GB98 in ref. [38] and GA98/GB98 in ref. [39]. Moreover, in some cases, it appears necessary to single out contacts involving the mutated residues for \textit{ad hoc} treatment [38].

To delineate the utility and limitation of common physical notions in accounting for experimental G\textsubscript{A}/G\textsubscript{B} observations, we introduce a model that combines a SBM potential with a physics-based transferrable all-atom potential. Going beyond prior efforts that considered only two or four sequences, our model is applied coherently to an extensive set of twelve GA/GB sequence variants covering the 3\(\alpha\) and 4\(\beta\)+\(\alpha\) folds. Favorable nonnative contacts are possible in our formulation because of the transferrable terms. This “hybrid” modeling approach recognizes that current knowledge of protein energetics is not sufficiently adequate—thus the need for a native-centric bias—yet at the same time posits that physical nonnative effects should manifest at least as a perturbation [43]. Within this conceptual framework, the transferrable component represents what we believe we know physically, whereas the SBM component represents the extent of our ignorance, which we should aim to eliminate in the future. To tackle the G\textsubscript{A}/G\textsubscript{B} system, we generalize the well-studied hybrid approach for a single-basin SBM [43–
to one based upon a dual-basin SBM [33–36,51]. The formalism is general, however, and thus should be applicable also to conformational switches other than GA/GB.

As detailed below, the GA/GB switching predicted by our model agrees with experiment. Moreover, the robustness and physicality of our predictions are buttressed by control simulations indicating a lack of folding of decoy protein sequences with folded structures very different from that of either GA or GB. Interestingly, refinements of the transferrable component in our potential to better account for the π-interactions of aromatic residues [52] leads to a sharper conformational switch, suggesting that incorporation of more accurate descriptions of the physical interactions can lead to tangible improvement of the model under the present framework.

Results

A working hybrid model for GA/GB physics with minimal native-centricity

As noted above, SBMs are valuable conceptual tools; but SBMs and hybrid models are admittedly interim measures. Ultimately, one wishes to simulate biomolecular processes using a completely transferrable physical potential. With this in mind, to maximize the physical content, our hybrid model was constructed with a native-centric, structure-based component as nonspecific and as unimposing as we found technically possible. For example, in contrast to previous all-atom SBMs for GA/GB [38,39] that enforce detailed native biases on dihedral angles and inter-atom distances [32], the SBM component of our hybrid model constrains only the Cα-Cα distances between residues that are at least three sequence positions apart. The rest of the interactions—including local backbone preferences and sidechain excluded volume—are provided entirely by the transferrable component. The SBM component of our model is sequence independent, in that the same native-centric potential applies to all GA/GB variants (Fig 1). In this way, the spatially coarse-grained SBM component serves merely to enable folding to the GA or GB native structures in an unbiased manner, all the while reducing as much as possible any artefactual memory of the sequence-structure relationship of any particular sequence. Accordingly, the differences in population in the two alternate folds for different sequences are determined solely by the physical transferable potential that admits nonnative as well as native interactions.

As described in Methods, the present sequence-independent SBM component is based on the consensus Cα-Cα native contact maps for GA and GB. Each consensus map was constructed using the four PDB structures for GA or GB variants for which experimental folded structures are available (Fig 2a and 2b). The consensus map contains only the native contacts common to all four PDB structures. Two residues of a given PDB structure are defined to form a native contact if the closest distance between any two non-hydrogen sidechain atoms, one from each residue, does not exceed 6 Å. Here the SBM energy for each consensus residue-residue native contact is constructed as a multi-Gaussian well potential [53], wherein the position of the minimum for each of the wells is determined by the four defining PDB structures. In most cases, the individual minima fuse into a single wider well because they are in close proximity (Fig 2c), although in some cases they retain their distinct minima when there are larger variations in contact distances among the PDB structures (Fig 2d). The potentials for all contacts in the two consensus native contact maps (Fig 2e) are provided in S1 Fig and S2 Fig.

Summing the energy terms for individual consensus native Gα contacts gives the overall native-centric potential E_A for GA and E_B for GB, the strengths of which are given, respectively, by e_A and e_B (Methods). A bi-stable SBM potential, E_{SBM}, is then obtained by combining E_A and E_B. The multi-Gaussian contact potentials here ensure that all native conformers used as input for the SBM potential are at an energy minimum of the same depth (e_A or e_B) for a given
fold. This approach captures the salient features of the two folds while allowing sufficient flexibility to accommodate variations in backbone and sidechain configurations among different GA/GB sequences.

To achieve an unbiased baseline sampling of the GA and GB folds, the SBM energy scales ε_A and ε_B are expected to be somewhat different and thus a calibration is necessary. Indeed, it has long been known from the study of single-basin SBMs that imposing a single SBM energy scale for different native structures would result in a spurious correlation between folding temperature and native contact density that is not observed experimentally [54]. For our system, the GA fold was found to be only slightly more dominant in test simulations using $\min(E_A) = \min(E_B)$ and the GB fold was only slightly more dominant for $\varepsilon_A = \varepsilon_B$. (Supporting Information S1 Text and S3a and S3b Fig and S3c and S3d Fig, respectively), whereas $\varepsilon_A = 0.96 \varepsilon_B$ allows for unbiased baseline sampling to produce results consistent with experiment. To minimize native-centricity as much as possible, we have examined the effect of different overall SBM interaction strengths and arrived at a workable value of $\varepsilon_B = -0.37$ (S1 Text, S4 Fig and S5 Fig). This strength corresponds to a weak native bias relative to the transferrable component,

Fig 1. The twelve GA/GB sequence variants used in our computational investigation. Sequences range from wildtype GAwt to GBwt. Intermediate sequences are labeled by their pairwise sequence similarity, e.g. GA88 and GB88 are 88% identical [19]. From top to bottom, new amino acid substitutions are marked in red. The L45Y mutation is highlighted with yellow shading. The blue (GA) and red (GB) backgrounds indicate the experimentally observed native fold of the sequences. As an example, the ribbon diagrams show the experimental folded structures of GA98 and GB98 with residue 45 in yellow and aromatic residues depicted as sticks.

doi:10.1371/journal.pcbi.1004960.g001
yet strong enough to guide folding. Under $\varepsilon_B = -0.37$, on average only less than one third ($18.9/60.2 = 0.31$) of the stabilization of GB98 is contributed by the SBM component E_{SBM} (S6 Fig). The rest (69%) is contributed by the transferrable E_{trans}. Further analyses in S1 Text and S7 Fig–S11 Fig, including Hamiltonian replica exchange simulations (S9 Fig and S10 Fig), indicate that the GA98/GB98 switching behavior is robust over values of ε_B ranging from -0.30 to -0.50 (S7 Fig and S8 Fig), and that folding and switching are observed only when neither E_{SBM} nor E_{trans} vanishes (S11 Fig). We adopt for E_{trans} the implicit-solvent all-atom potential developed at Lund University (available as PROFASI), which accounts for backbone, non-bonded excluded-volume, hydrogen-bonding, charged and hydrophobic side chain interactions in a physical manner [55,56].

The evolving dual-basin free energy landscapes of GA/GB variants

With a SBM component providing minimally necessary restriction on the accessible conformational space, the transferable component of our hybrid model modulates the stability of the native and unfolded populations. Using the progress variables Q_A and Q_B and the simulation procedure described in Methods, the present modeling setup correctly identifies the native basin of 12 sequence variants of the G_A/G_B system (Fig 3a). The variables $Q_A=E_A/95\varepsilon_A$ and $Q_B=E_B/137\varepsilon_B$ are continuum versions of the discrete native contact fraction Q commonly used in protein folding studies [57,58]. For the energy landscapes in Fig 3a, the G_A and G_B
native basins are situated, respectively, at QA≈0.9, QB≈0.15 and QA≈0.3, QB≈0.85; whereas the basin for the common unfolded state is centered at QA≈0.4, QB≈0.15. The dual native-bias of the SBM notwithstanding, Fig 3a shows that the transferable component is sufficiently strong to capture the physical mutational effects, resulting in significant shifts in populations and, in the case of GAwt, GBwt and GA30/GB30, virtual depopulation of the entire alternate native basin.

Fig 3. Rationalization of the GA/GB switch and model prediction of incremental stabilization of the alternate fold. (a) Free energy landscapes as a function of the progress variables QA and QB are simulated in our hybrid model (εB = −0.37). The QA/QB scale (bottom-left axes for GBwt) is identical for all GA/GB variants. Free energy, in units of k_BT, is the negative natural logarithm of the sampled population (Methods). For each sequence, this quantity is computed for points on a ~100×100 grid at the sequence’s melting temperature TM. The free energies for the grid points are plotted according to the color code on the right, with the lowest free energy on the grid normalized to zero for each sequence. Note that all resulting free energy values ≥ 6 are shown in the same color. (b) Free energy differences ΔF(GA−GB). (c) Comparing sequence-dependent TM s from experiment and simulation, each normalized to the range defined by GA77 (set to 1) and GB98 (set to 0). The TM values in (c) are in an arbitrary unit for a non-absolute temperature scale. (d) Scatter plot between absolute melting temperatures in simulation (model unit) and in experiment (in K). The experimental TM s used in the comparison in (c) and (d) are from refs. [19,20].

doi:10.1371/journal.pcbi.1004960.g003
We computed a free energy difference $\Delta F(G_A - G_B) \equiv -\ln(P_A/P_B)$ between the G_A and G_B folds for all the sequence variants (Fig 3b), where P_A and P_B are the populations of the two native basins defined, respectively, by $Q_A \geq 0.6$, $Q_B < 0.6$ and $Q_B \geq 0.6$, $Q_A < 0.6$. Thus, a negative $\Delta F(G_A - G_B)$ favors G_A whereas a positive $\Delta F(G_A - G_B)$ favors G_B. The replica-exchange simulation results in Fig 3b show that the single L45Y mutation from GA98 to GB98 entails a small yet appreciable shift in favor of G_B, a robust finding corroborated by constant-temperature simulations (S12 Fig). The aromatic Y45 partakes in a hydrophobic cluster in G_B but apparently contributes little to stability in G_A [22]. In the present transferrable potential, the hydrophobicity-based non-bonded energy term is mostly responsible for favoring this Y45-containing hydrophobic G_B cluster because the strength of the term scales with the number of contacting nonpolar atoms, and aromatics provide large contact areas [55]. The three mutations separating GA95 and GB95 result in a more notable population shift. In addition to L45Y, the other two amino acid substitutions are I30F leading from GA95 to GA98 and L20A leading from GB98 to GB95. Notably, the phenylalanine substitution of I30F fits into the hydrophobic core of both G_A (partially buried) and G_B (almost fully buried).

As the sequence separation between the pair is further widened (GA88/GB88, GA77/GB77, GA30/GB30, and GAwt/GBwt differ by 7, 13, 39, and 47 mutations respectively, Fig 1), the G_A/G_B free energy difference increases. The value of $\Delta F(G_A - G_B)$ increases rather smoothly from GAwt to GBwt as expected. The only exception is the step from GA88 to GA95, for which there is a decrease in G_B propensity instead of the expected increase (Fig 3b). As mentioned above, for the GA30/GB30 pair, and the GAwt/GBwt pair that shares only 16% of their amino acids, the preference for the dominant native structure is so strong that only the fringe but not the bottom of the alternate native basin was sampled (Fig 3a). These free energy shifts are echoed by the balance between transition frequencies to and from the native basins along Monte Carlo simulation trajectories. Using a three-state division of the Q_A/Q_B energy landscape into unfolded (U), G_A, and G_B regions, a gradual shift from U\rightarrowG_A to U\rightarrowG_B transitions is concomitant with the sequence variation from GAwt to GBwt (S1 Text and S13 Fig).

We also compared the experimental and simulated melting temperatures of the GA/GB variants (Fig 3c and 3d). Because the model potential in the present hybrid GA/G_B model lacks cooperativity-enhancing desolvation barriers [59,60] and neglects temperature dependence in the solvent-mediated interactions [29,61,62], simulated and experimental T_ms are not directly comparable. For example, as suggested by related kinetic trends in other protein folding models [29], insufficient folding cooperativity in the present hybrid model likely caused the simulated T_m range to be narrower than that observed experimentally (the T_m ratios of GB98 over GA77 is 0.99 for simulation and 0.88 for experiment; see Fig 3d). Nonetheless, for the sequence variants from GA77 to GB77, the correlation between simulated and experimental T_m is reasonably good. The consistency in T_m trend for seven of these eight variants is apparent in the comparison using a normalized non-absolute temperature scale (Fig 3c) as well as in the scatter plot for absolute temperatures (Fig 3d). The steady drop in experimental T_m from GA77 to GB98 was captured very well by simulation (Fig 3c). The outlier GB88 is known to be very unstable experimentally (T_m\approx 44°C). Curiously, this effect is also reflected in our model, albeit to an exaggerated degree.

Putative folding pathways of G_A/G_B bi-stable sequences

Combined structure-based clustering of the simulated GA98 and GB98 conformations allows for an analysis of likely kinetic events during bi-stable folding (Methods). The centroid positions of 50 conformational clusters on the Q_A/Q_B landscapes are shown in Fig 4 together with the outlines of the bi-stable GA98 free energy landscape, which is quite similar to that of GB98 (Fig 3a). The size of a cluster is the number of sampled conformations that are within a certain
degree of structural similarity among themselves. Each centroid conformation is a representative of all the conformations in a given cluster. Fig 4 shows that the centroid positions cover most accessible regions of the free energy landscape. Naturally, the unfolded state harbors the majority of clusters because unfolded conformations are structurally most diverse. The most extended conformations are positioned in the bottom-left region with small Q_A and Q_B values as expected (cluster no. 7). Under our model potential, there is a significant bias in favor of helical structures instead of unstructured coils in the unfolded ensemble.

Fig 4. Clustering analysis of GA98 and GB98 suggests putative folding trajectories. 50k-means clusters were obtained from a combined pool of 40,000 randomly sampled GA98 and GB98 conformations (Methods). The positions of their centroids are indicated on the Q_A/Q_B plane. Each centroid is represented by a grey filled circle of size commensurate with the number of conformations in the given cluster. Included in the background, as a positional reference, is the GA98 free energy landscape (Fig 3a). The clusters are numbered arbitrarily from 0 to 49. In the interest of readability, only number labels for selected clusters deemed to be important for the sequences’ folding pathways are shown. The centroid conformation is depicted for some clusters. A pair of centroid positions is connected by a line if their distance measure $RMSD^m_{sm} \leq 5.75$ Å (Methods). Increased thickness/darkness of the connecting lines indicates that the connected centroid conformations are structurally more similar with smaller $RMSD^m_{sm}$. Conformations in the yellow boxes are taken to constitute a single putative transition state TS-G_A for G_A folding and two putative transition states TS1-G_B and TS2-G_B for G_B folding. The TS-G_A, TS1-G_B, and TS2-G_B regions encompass, respectively, 452, 834, and 805 of the 40,000 sampled conformations. The centroid structure of each putative transition state (TS) is exhibited to illustrate the structural characteristics of the TSs; but it is important to note that the putative TS ensembles are structurally diverse (S14 Fig). This property is reflected by the fact that the conformations in each TS ensemble belong to multiple clusters. The three clusters (nos. 43, 46, 23) that contribute most conformations to TS-G_A account for only 38% of the TS-G_A ensemble. The three clusters that contribute most to TS1-G_B and TS2-G_B (nos. 0, 25, 12 and nos. 22, 29, 13) account for 36% and 64% of their respective ensembles. We mark each of these most TS-related clusters by a yellow ring around the grey circle representing the cluster’s centroid position. In the conformational drawings, parts of the chain corresponding to β-hairpin 1 (residues 1–20) and β-hairpin 2 (residues 42–56) in the native G_A fold are highlighted, respectively, in purple and orange. Shown as sticks are aromatic residues to be considered further below for possible participation in π-interactions. The positions of these aromatics also serve to highlight the locations of the main hydrophobic regions in the folded and partially folded conformations shown.

doi:10.1371/journal.pcbi.1004960.g004
As has been demonstrated, kinetic information can be gleaned from features on low-dimensional free energy landscapes determined solely by equilibrium sampling of one or two progress variables [63–65]. In using Q_A/Q_B landscapes for kinetic inference, we are following this tradition. It should be noted, however, that not all kinetic properties, especially those related to kinetic trapping, are deducible from low-dimensional landscapes [45,50]. For instance, not all structurally similar conformations based on the superposition-map measure and indicated by connecting lines in Fig 4 are readily accessible to one another kinetically. Therefore, here we qualify the "transition state" and "intermediate states" suggested by free energy landscape features as "putative". With this caveat in view, we identify the conformations around the $0.66 < Q_A < 0.74, 0.12 < Q_B < 0.22$ bottleneck region as the putative transition state for G_A folding. Likewise, we identify the conformations around the two bottleneck regions around $0.3 < Q_A < 0.55, 0.35 < Q_B < 0.43$ and $0.28 < Q_A < 0.4, 0.58 < Q_B < 0.66$ as two putative transition states for G_B folding (yellow boxes in Fig 4), and the local-minima region between the latter two transition states as a putative G_B intermediate state.

Along the Q_A direction at $Q_B \approx 0.15$, a simple folding transition via a compact transition state $TS-G_A$ is apparent in Fig 4. This putative process starts from an extended, mostly disordered state (cluster no. 7). Subsequently, more helices form and the chain first collapses into a loose arrangement of three helices around $TS-G_A$ and then proceeds to form the ordered native G_A structure, with cluster no. 43 and adjacent clusters differing only by their disordered termini.

Folding along Q_B at $Q_A \approx 0.35$ is more complex. Fig 4 suggests that the second (C-terminal) β-hairpin is formed upon reaching the first G_B transition state $TS1-G_B$, but at this stage the rest of the protein chain is still relatively open. The G_B intermediate state that follows consists mainly of a variety of conformations with the second β-hairpin aligned with the N-terminal β-strand. $TS1-G_B$ encompasses more conformational diversity than the single centroid conformation might convey. When we partition the conformational ensemble in this region into two or more clusters (S14 Fig), alternative pathways across this transition region appear possible. One of the alternate pathways may entail a "mirrored" version of the second β-hairpin collapsing and accumulating as an "off-pathway" intermediate (see, e.g., the centroid conformation of cluster no. 12 in S15 Fig). As such, conformations with this topology likely constitute a kinetic trap that requires significant unfolding before folding to the G_B native state can proceed.

Direct transition from an "on-pathway" intermediate to native G_B is expected for those conformations with native-like orientation of the terminal secondary structure elements. To reach the second putative G_B transition state $TS2-G_B$, excess helical structure needs to be converted into the fourth β-strand. The chain then proceeds to sample different near-native orientations of the central helix relative to the β-sheet, and attempt packing of the hydrophobic core before finally arriving at the G_B native state (cluster no. 4).

Possible molecular basis for the L45Y-induced structure switch

A detailed analysis of the population shift caused by the L45Y mutation in the conformational clusters in Fig 4 indicates that L45Y can start biasing in favor of the G_B structure even when the folding is in its early stage (S1 Text and S15 Fig). In this process, the aromatic-aromatic Y45-F52 interaction, which is more frequent in GB98 than in GA98, is seen as playing a significant role in the G_B-favoring effect of L45Y (S16 Fig).

Control simulations of sequence decoys and alternative switches

As a test of the robustness of our hybrid model, we challenged it by several other sequences from the PDB that have the same 56-residue chain length as the G_A/G_B sequences but with
native folds different from either GA or GB. The same GA/GB SBM was applied with each sequence’s Lund potential used as the transferrable component. The goal is to ascertain whether these decoy sequences would mistakenly adopt the GA or GB fold. Seven of the decoy sequences tested behaved reassuringly. Despite the GA/GB SBM, they did not populate either of the GA/GB native basin, even though some of their native conformations have secondary structures similar to those of GA or GB (Fig 5a–5g). This result shows that E_{trans} can override E_{SBM}, underscoring that the transferrable physical potential plays a highly significant, if not dominant, role in our model.

Among the decoys tested, serine protease inhibitor infestin 4 is an interesting exception because its native structure is not similar to GA but it populates the GA basin (Fig 5h); but the bulk of its conformations remain unfolded. In this regard, depopulation of both native basins is remarkable for the double helical Ral binding domain because its helical secondary structures are similar though not identical to that of GA (Fig 5i).

Finally, to test whether our model can fold a non-GA/GB sequence if its native fold is essentially identical to either GA or GB, we considered a modified 56-residue version of Protein L (Methods). Protein L has only ~16% sequence identity with GBwt but adopts the overall GB fold experimentally. Reassuringly, our simulation shows that the modified Protein L sequence is compatible with the GB basin but not the GA basin (Fig 5j).

Apart from decoys, we also challenged our formulation with an alternative structure switch in the GA/GB system discovered more recently. Experiments indicate that the T25I mutant of GB98 reverts back to the helical structure of the GA folds, but with an additional L20A mutation can be restored to the GB fold [22]. Our simulations show a high degree of bi-stability for these two sequences as for GA98 and GB98. Nonetheless, we also found a small free energy difference that is consistent with the experimentally observed native structures of these two variants (Fig 6a and 6b). Another pair of possible GA/GB switch sequences that came to our
attention was proposed recently [66], but the predicted switching behavior has not been confirmed by experiment or investigated by explicit-chain modeling. Our simulations here are in agreement with the predictions in finding that sequence "S2" prefers the GA fold while "S1" prefers the GB fold (Fig 6c and 6d). The free energy differences for these two alternative switch mutations are provided in S17 Fig. Our results suggest that GB98-T25I,L20A and S1 favor GB via different mechanisms. GB98-T25I,L20A predominantly stabilizes the entire unfolded state and parts of the GB native state yet leaving the native GA basin appreciably populated (Fig 6b), whereas the S2 to S1 mutation P54V clearly destabilizes the GA fold (Fig 6c).

Sharpness of conformational switch can be enhanced by π-π interactions among aromatic residues

The analysis of the L45Y mutation in S15 Fig reveals that a major part of its stabilizing effect on the GB fold is through enabling the aromatic-aromatic Y45-F52 interaction in GB98. In view of this observation and the general importance of π-related interactions in biomolecular processes [49,67], we constructed a rudimentary π-π interaction potential for F and Y residues (Methods). Our goal here is to explore how an orientation-dependent interaction between aromatics that goes beyond simple hydrophobic effects may affect the behavior of the GA/GB conformational switch, although a comprehensive study of aromatic interactions is beyond the scope of this work. By using three geometric variables for two neighboring aromatic rings (Fig 7a), we derived an empirical π-π potential [68] for F and Y from PDB statistics (Fig 7b). When this π-π potential replaces the simpler hydrophobic interactions among F and Y residues in the original Lund potential, the effect of L45Y is affected appreciably (Fig 7c).

We define a difference landscape for the original Lund potential (Fig 7c, left) as the difference between the GA98 and GB98 panels in Fig 3a. The difference landscape for the modified transferrable potential (Fig 7c, right) is similarly defined using the QA/QB landscapes of GA98 and GB98 in S18 Fig that incorporates our π-π potential. In the Lund potential (Fig 7c, left), L45Y stabilizes the unfolded and GB intermediate states rather homogeneously (stabilization indicated by blue coloring). The GA native basin is destabilized (red coloring), but so are parts of the GB native basin. In contrast, with the π-π potential (Fig 7c, right), L45Y has a stronger impact. It now destabilizes most of the unfolded state and parts of the GA native basin whereas the stabilization focuses more on the intermediate and native basins of GB. Although the
Fig 7. Effect of a rudimentary $\pi-\pi$ potential for Phe (F) and Tyr (Y) residues on the GA/GB switch. (a) Three geometric variables are used to characterize the relative position and orientation of a pair of aromatic rings in F or Y: center-to-center distance r (spatial separation between the centers of the two rings), planar tilt angle θ, and center dislocation angle ϕ. (b) PDB statistics for F-F, Y-Y, and F-Y contacts were used to derive an interaction strength of the $\pi-\pi$ potential as a function of r, θ, and ϕ. The vertical variable here corresponds to $|E_{\pi\pi}(r, \theta, \phi)|\epsilon_{\pi\pi}$ defined in Methods. (c) Difference landscape for the L45Y mutation. Free energy of GB98 minus free energy of GA98 as a function of Q_A and Q_B computed in our hybrid model with two different transferrable components: the original Lund potential (left), and the modified potential (right) that incorporates the F,Y potential with interaction strengths given in (b) and $\epsilon_{\pi\pi} = 1.5$.

doi:10.1371/journal.pcbi.1004960.g007
present \(\pi \cdot \pi \) potential is rudimentary, this comparison suggests that orientation-dependent \(\pi \cdot \pi \) interactions likely play a significant role in the experimental sharpness of the \(G_A/G_B \) conformational switch.

Discussion

To recapitulate, we showed that a coarse-grained \(\alpha \) SBM in combination with an all-atom transferable potential correctly identifies the native state of an extensive set of GA and GB sequence variants. As shown above, our hybrid model is well suited for exclusively selecting the correct native state for GA/GB pairs of up to 77% identity. At higher sequence similarity, both folds were populated in our simulations; but a clear preference consistent with experiment was observed.

Further comparison with experiment

Beside this overall success, two findings from our investigation are of experimental relevance: (i) existence of an equilibrium intermediate for GB folding (Fig 3a, GB panels); and (ii) a critical role of the second \(\beta \)-hairpin in the \(G_B \) folding pathway (Fig 4 and S15 Fig). On both counts, our model results are in general agreement with experimental findings (see below), lending additional credence to our contention that the present hybrid model is capable of capturing essential physics of \(G_A/G_B \) bi-stability and the GA98/GB98 conformational switch.

Firstly, our prediction of a GBwt (also called protein G or GB1) intermediate is in line with several [69–72] though not all [73] simulation studies. Experimental evidence for a GB folding intermediate was presented, but there is no clear consensus yet regarding the existence and/or nature of a GB intermediate—unlike the generally recognized two-state nature of \(G_A \) folding. Two early experiments concluded that GBwt folding is two-state [74,75]. In contrast, another early continuous-flow ultrarapid mixing experiments on GBwt suggested a native-like intermediate [76], but this conclusion was disputed [77]. A later FRET study also found an intermediate near the urea denaturation midpoint of GBwt [78]. A subsequent equilibrium GBwt unfolding experiment showed two-state behavior; but the kinetic chevron rollover was indicative of an intermediate [79]. The latter finding is in line with a recent experimental and molecular dynamics study showing that GBwt folding is three-state [80]. As for GB variants, one study found that GB88 and GA88 are two-state folders [21]. However, an investigation on a different set of variants GA30/GB30, GA77/GB77, and GA88/GB88 supported three- and two-state folding, respectively, for all GB and GA variants [81]. Taken together, recent evidence appears to be somewhat more preponderant on the existence, rather than non-existence, of a GB intermediate; and is unequivocally affirmative of the two-state nature of \(G_A \) folding. This trend is reflected by our simulated free energy landscapes in Fig 3a.

Secondly, Fig 4 and S15 Fig suggest that the second \(\beta \)-hairpin is critical and more important than the first \(\beta \)-hairpin in \(G_B \) folding. Although this finding was deduced from an analysis of GA98 and GB98 clusters, it is likely applicable to other GB variants, including GBwt, because of the similarity among their free energy landscapes (Fig 3a). Indeed, NMR experiments on peptides from GBwt found that, in isolation, the second \(\beta \)-hairpin is much more stable than both the helix and the first \(\beta \)-hairpin. It forms a stable, native-like \(\beta \)-hairpin with its three aromatic residues W43, Y45, and F52 forming a cluster stabilized by both hydrophobic and (probably \(\pi \)-related) polar interactions [82]. In contrast, the first hairpin was found to be mostly flexible in isolation and not native-like [83]. Hydrogen exchange experiments on the entire GBwt protein also revealed an early folding state with the second \(\beta \)-hairpin having the highest protection factors, whereas the helix has a lower and the first hairpin has the lowest [77,84]. Based on \(\Phi \)-value analysis for a single transition state, another study also pointed to the
presence of the second β-hairpin in the GBwt transition state [74]. Taken together, the experimental data summarized above provide support for a critical role of Y45-F52 in favoring early formation of the second β-hairpin and its partial collapse together with the helix, as suggested by our simulation (compare TS1-Gb in Fig 4 and S14 Fig).

In this regard, some differences between the folding transition states of GB variants and that of GBwt were reported. In particular, Φ-value analysis [85] has found that the first transition state in GB30 is more sensitive to mutations in the second β-hairpin whereas GB88 is more sensitive in the first hairpin [81]. Nonetheless, the same set of data for GB88 is suggestive of native-like transition-state contacts, such as I6-T53, that are between strands at the two termini because some of their residues have high Φ-values (e.g., 0.48 for I6 and 0.42 for T53). If this is indeed the case, the experimental data is not inconsistent with our simulation result suggesting that the anti-parallel alignment of the termini is an early rate-limiting event for Gb folding (Fig 4 and S15 Fig).

Outlook

Taking all the evidence presented together, the performance of our model suggests that the remarkable GA/GB bi-stability phenomenon can be rationalized to a significant extent by specific hydrophobic interactions, though our physical understanding is still far from complete. As discussed above, future improvement in matching theory with experiment should be sought by enhancing folding cooperativity and increasing sharpness of the conformational switch in our model. One possible direction is to incorporate desolvation barriers in the transferrable potential because this is a robust physical feature of solvent-mediated interactions that have a significant impact on folding cooperativity [29]. Another direction, which was initiated with some success here, is to devise a more accurate description of aromatic interactions [67]. In this respect, a natural next step is to extend our model π-π interactions to encompass Trp and to adopt a more comprehensive account of the relative position and orientation of interacting aromatic sidechains that goes beyond the three variables in Fig 7.

Despite the simplicity of the Lund potential, it has succeeded in folding several smaller proteins [55,86] and the 92-residue Top7 [87]. However, in long unbiased folding simulations using only the Lund potential with no SBM, we were unable to observe stable native-like conformations of GA/GB variants, indicating that as-yet-unknown energetic contributions, in addition to those in the Lund potential, are needed for a complete physical account. The GA/ Gb system is a useful benchmark for testing forcefields and simulation techniques. Recent success in using all-atom explicit-water molecular dynamics to simulate folding of a number of small proteins is remarkable [88–90]. However, despite the notable advance and ongoing force-field improvement [23,91], no ab initio forcefield to date has been able to fold the GA/GB variants correctly [25].

In this context, hybrid modeling is a highly useful interim approach to gain physical insight into protein folding energetics, effects of mutations, and to assist in protein design. Owing to its reliance on SBMs, this approach is limited to proteins with known structures. Nonetheless, for many globular proteins, the native structure is either known or can be inferred through homology or sequence-based statistical models [92,93], and are therefore amenable to hybrid modeling. Common approaches to estimate mutational ΔΔG [94] only consider the known native structure with little or no regard to the unfolded state and folding dynamics. Hybrid models can address this shortcoming by providing testable predictions about the mutational effects on the entire free energy landscape. Indeed, because of its computational tractability, hybrid models can facilitate efficient development and testing of physically more accurate transferrable potentials, and thus can contribute to an ultimate elimination of the current necessity for SBMs.
Methods
Consensus contact maps for multiple native conformers and multi-well contact potentials

As described above in Results, we derived for the native-centric SBM component of our hybrid model two consensus native contact maps that capture the general features of the GA and GB folds by using PDB structures for four GA sequence variants and four GB sequence variants (Fig 2a and 2b). The sequences and their corresponding structures (in parentheses) are GAwt (2FS1), GA88 (2JWS), GA95 (2KDL), GB98 (2LHC), GBwt (1PGA), GB88 (2JWU), GB95 (2KDM), and GB98 (2LHD). All of these PDB structures except the x-ray structure for GBwt were determined using NMR and contain multiple model structures. For simplicity, we used only the first model in each NMR PDB file in our analysis. Assuming that these consensus contact maps provide a reasonable coverage of the structural variations in the GA/GB system, we apply these maps to sequence variants GA30, GB30, GA77, and GB77 as well, since no detailed structural data were available for the latter four sequences [20].

We introduce E_A and E_B as the individual native-centric potential energy functions for the GA and GB folds, respectively. E_A and E_B depend on the $C_{\alpha}-C_{\alpha}$ distances r_{ij} for all residue pairs i,j that belong to the given consensus native contact map via the following Gaussian form [53]:

$$E_A = \varepsilon_A \sum_{ij}^{n_A} \left(\prod_{s=1}^{n_s} \left(1 - e^{-\left(\frac{(r_{ij} - d_{ij}^{(s)})^2}{2w^2}\right)} \right) - 1 \right),$$

and a similar equation for E_B with all instances of “A” replaced by “B”. Here the summation over ij for E_A and E_B runs over, respectively, all $n_A = 95$ and $n_B = 137$ contacts in the consensus contact maps for GA and GB. The product over s takes into account the multiple native distances $d_{ij}^{(s)}$ for residue pair ij in the $n_s = 4$ PDB structures contributing to the consensus map. The strength of E_A or E_B is given, respectively, by ε_A or ε_B, which corresponds to the well depth for a single native contact. The w parameter that controls well width is set at 0.5 Å. In the present study, this formulation leads to a wide potential well for an overwhelming majority of consensus contacts. Because in most cases the native Gaussian wells for individual structures overlap considerably, we observe only minor barriers between individual Gaussian minima among all the consensus native potentials shown in S1 Fig and S2 Fig. In Fig 2c and 2d, examples of the consensus potential $E_y = \prod_{ij}^{n} \left(1 - \exp[-(r_{ij} - d_{ij}^{(s)})^2/2w^2] \right)$ for an individual contact (black curves) are provided together with the corresponding energy term $1 - \exp[-(r_{ij} - d_{ij}^{(s)})^2/2w^2]$ for one of the four contributing PDB structures (color curves).

The above Gaussian form of the native-centric energy function is more suitable than the Lennard-Jones (LJ) form for our present purpose. As has been noted, it is difficult to produce a viable combined energy function from multiple native-centric LJ functions for multiple structures unless the conformational diversity is approximated by a single centroid structure [95]. LJ potentials are inflexible in their well shape (width). Each inter-residue contact comes with a built-in repulsion term determined by the minimum-energy contact distance in LJ. As a result, multiple instances of the same contact at varying distances can lead to occlusion of the shorter-range contact by the repulsion of the longer-range contact if the LJ form is used instead of the Gaussian form to construct a combined energy function in accordance with the equation above (S1 Fig and S2 Fig).
Native bias for two alternate folds and the transferrable component in the hybrid model

As outlined above, the total potential energy E_{total} is the sum of a native-centric component and a transferrable component, viz., $E_{\text{total}} = E_{\text{SBM}} + E_{\text{trans}}$. The dual-basin native-centric SBM component E_{SBM} is constructed simply as $E_{\text{SBM}} = E_A + E_B$. Aiming to increase the weight of the transferrable component in our model potential, we did not employ the more native-specific prescription of logarithmic mixing in ref. [35] for E_{SBM}. For the transferrable component E_{trans}, we adopt the Lund potential: $E_{\text{trans}} = E_{\text{local}} + E_{\text{EV}} + E_{\text{HB}} + E_{\text{SC}} + E_{\text{HP}}$, where the energy terms on the right are for local backbone interactions (E_{local}), non-bonded excluded volume (E_{EV}), hydrogen bonds (E_{HB}), charged (E_{SC}) and hydrophobic (E_{HP}) sidechain interactions. Bond lengths and bond angles are kept constant, as described by the original authors [55]. Dimensionless energy units are used in our simulations with Boltzmann constant k_B effectively set to unity.

Monte Carlo simulations

We use a Monte Carlo (MC) [96] package [56] from Lund University to conduct parallel tempering (temperature replica exchange) MC simulations [97]. MC chain moves included backbone and side chain rotations as well as biased Gaussian steps [98]. All simulations were initialized from random chain conformations and time propagated in units of MC cycles. Each cycle consisted of a number of elementary conformational MC updates scaled to the number of rotational degrees of freedom of the simulated protein chain so that on average all degrees of freedom were perturbed once per cycle. For example, for GA98 and GB98 these numbers of degrees of freedom were 283 and 282, respectively.

Initially, parallel tempering simulations were performed over 32 replicas per simulation over a wide temperature range. This is then followed by a second simulation using a finer temperature grid around the melting (unfolding) temperature, T_m, determined as the temperature at which the heat capacity function

$$C_V(T) = \frac{1}{k_B T^2} \langle (E_{\text{total}})^2 \rangle - \langle E_{\text{total}} \rangle^2$$

computed from the first set of simulations attains its maximum. Here T is absolute temperature of the simulation, E_{total} is the total energy defined above, and $<\ldots>_T$ denotes conformational averaging at T. The refined temperature grid was tuned to ascertain sufficient replica exchange acceptance probability around T_m (~99%). Replica exchange was attempted every 5,000 MC cycles, the first 30% (3.0×10^6 MC cycles) of every trajectory was excluded from analysis. Populations simulated at different temperatures were reweighted to T_m using WHAM [99]. In select instances, 128 constant-T simulations at T_m with increased sampling were conducted to corroborate parallel tempering results (S5 Fig and S12 Fig). In view of the need for a high computational throughput for varying input parameters and sequences, most simulations were terminated after 10^7 MC cycles (~2.8×10^9 elementary MC updates). We verified that the resulting simulated $\Delta F(G_A-G_B)$ for GA98 and GB98 is reasonably robust in longer simulations.

Clustering of sampled conformations

From the replica exchange simulations around T_m for GA98 and GB98, for each sequence we randomly sampled 20,000 conformations obtained at the two sequences' respective T_ms. These conformations were combined into a single pool of 40,000 conformations for clustering analysis. Each conformation in the pool was represented as a (4×56)-dimensional vector. The first
56 and second 56 components of this vector are the distances between the Cα atoms in the given conformation and the corresponding Cα atoms, respectively, of an optimally superposed GA98 PDB structure (2LHC) and an optimally superposed GB98 PDB structure (2LHD). Similarly, the third 56 and fourth 56 components of the (4×56)-dimensional vector are the distances between the Cβ atoms in the given conformations and the corresponding Cβ atoms in the optimally superposed PDB structures, respectively, for GA98 and GB98. Structural superpositions were optimized using the MDtraj [100] implementation of Theobald’s algorithm for RMSD calculations [101]. The (4×56)-dimensional distance vectors were then clustered by the k-means algorithm [102] with k = 50 chosen as the number of clusters. Cluster centroids are defined as actual conformations situated closest to the cluster centers in the (4×56)-dimensional space.

We define a distance measure between the centroids of two conformational clusters as the Cartesian distance between the centroids’ (4×56)-dimensional vectors normalized by (4×56)1/2. We refer to this distance measure as RMSDsm, because it is the root mean square difference of the centroids’ superposition maps, RMSDsm. The latter is defined for any pair of conformations C_μ and C_ν as

$$\text{RMSD}_{\text{sm}}(C_\mu, C_\nu) = \sqrt{\frac{1}{4 \times 56} \sum_{i=1}^{4 \times 56} (d_i^{(\mu)} - d_i^{(\nu)})^2}$$

where $d_i^{(\mu)}$ and $d_i^{(\nu)}$ are the components of the (4×56)-dimensional vectors representing, respectively, conformations C_μ and C_ν. RMSDsm was first used in the general clustering for all conformations. For Fig 4, the general definition was applied to pairs of cluster centroids, wherein only pairs with RMSDsm ≤ 5.75 Å are shown by connecting lines. This threshold was chosen solely for the presentational purpose of not obstructing the visualization in Fig 4 yet providing as much information as possible about the structural relationships between clusters that share a reasonable degree of geometric similarity.

Design of a 56-residue version of protein L for a control simulation

The sequence of the modified version of protein L in Fig 5 was obtained by first structurally aligning its PDB structure (2PTL) with that of GB1 (1PGA) and then removing the unaligned N- and C-terminal tails. Internal loop residues 12, 40, 41, and 42 were also removed and a glycine was inserted between residues 23 and 24. This procedure led to the following sequence used in Fig 5: VTIKANIFANSTQTAEFKGTAFKAETSEAYAYADTLKKEYTVADKGYTLNIKF.

Rudimentary statistical potential for π-π interactions among Phe and Tyr residues

Interactions between aromatic residues in the Lund potential are treated only by its hydrophobic side chain potential [55]. To explore possible π-interactions that are not hydrophobic in nature but are nonetheless known to play significant structural roles in biomolecules [49,67,103,104], we modified the Lund potential for Phe and Tyr, replacing their contact-area-dependent hydrophobic interactions by an orientation-dependent potential. This rudimentary π-π potential is parametrized by three geometric variables r, θ, ϕ characterizing the relative position and orientation of two aromatic rings (Fig 7a). There is one Trp in the GA/GB sequences (W43); but for simplicity we restrict our exploration to Phe and Tyr, leaving the treatment of the geometrically more complex Trp to future studies. The present π-π interaction is derived as a statistical potential from a PDB data set obtained through the PDB-SELECT [105] repository at http://swift.cmbi.ru.nl/gv/select/index.html. The sequence similarity cut-off was 30%, R-
factor cutoff was 0.21, and resolution cut-off was 2.0 Å. The dataset contained 9,796 protein crystal structures (created on January 26, 2013). For all the observed F-F, Y-Y, and F-Y contact pairs in this data set, the number of occurrences \(P(r, \theta, \phi) \) of \(r, \theta, \phi \) were distributed into bins of size 0.3 Å for \(r \) between 3 Å and 12 Å and bins of size 3° for \(\theta, \phi \) between 0° and 90°. Based on this statistics and following Procacci and coworkers [68], we define a rudimentary \(\pi-\pi \) interaction energy

\[
E_{\pi\pi}(r, \theta, \phi) = -\varepsilon_{\pi\pi}\{1+\ln[P(r, \theta, \phi)/P_{\text{max}}]/[\ln(P_{\text{min}}/P_{\text{max}})]\}
\]

for each of the three residue type pair F-F, Y-Y, or F-Y, where \(P_{\text{max}} \) and \(P_{\text{min}} \) are, respectively, the maximum and minimum non-zero values of \(P(r, \theta, \phi) \) among all the bins for a given pair. We further set \(E_{\pi\pi} = 0 \) for all \(r, \theta, \phi \) bins that received zero entry from the PDB data set. In this way, for \(\varepsilon_{\pi\pi} > 0 \), the present \(\pi-\pi \) potential is an attractive interaction that varies between \(E_{\pi\pi} = -\varepsilon_{\pi\pi} \) and 0 (Fig 7b). Here we use \(\varepsilon_{\pi\pi} = 1.5 \) for all three residue type pairs.

Supporting Information

S1 Fig. Multi-well Gaussian contact potentials for 95 consensus GA native contacts. The contacts are numbered arbitrarily from 1 to 95. Residue pairs of the contacts are in parentheses. Here contact energy \(E_{ij} \) (in units of \(\varepsilon \)) is a function of Cα-Cα distances \(r_{ij} \) (in Å). For each contact, a single Gaussian multi-well potential derived from the corresponding Cα-Cα distances \(d^{(i)}_{ij} \) in the PDB structures of four GA sequences is in blue. For comparison, four separate Lennard-Jones (LJ) potentials \(4\varepsilon[(d^{(i)}_{ij}/r_{ij})^{12}-(d^{(i)}_{ij}/r_{ij})^{6}] \) with the same native Cα-Cα distances and well depth \(\varepsilon \) are shown in red, and the linear combination of the four Lennard-Jones potentials \(\sum_{i} \varepsilon[(d^{(i)}_{ij}/r_{ij})^{12}-(d^{(i)}_{ij}/r_{ij})^{6}] \), each with well depths scaled down to \(\varepsilon/4 \), is in green. Details of our construction of multi-well Gaussian contact potentials are given in Methods of main text.

(TIFF)

S2 Fig. Multi-well Gaussian contact potentials for 137 consensus GB native contacts. Same as S1 Fig but here the potentials were derived from the known folded structures of four GB sequences.

(TIFF)

S3 Fig. Effect of SBM strengths on simulated free energy landscapes in the hybrid model. Free energy as function of QA and QB was computed using replica exchange for GA98 (left) and GB98 (right) for different ratios of SBM energies for GA and GB at the different models’ respective \(T_{ms} \), with \(\varepsilon_{B} = -1 \) throughout. (a,b) The GA and GB SBM basins have the same minimum energy, viz., \(\min(E_{A}) = \min(E_{B}) \). (c,d) The individual native contact strengths in GA and GB are identical, i.e., \(\varepsilon_{A} = \varepsilon_{B} \).

(TIFF)

S4 Fig. Sequence-dependent native preference \(\Delta F(GA-GB) \) at the models’ respective \(T_{ms} \) for four different SBM strengths \(\varepsilon_{B} \). Results for the \(-\varepsilon_{B} \) values tested are shown in different color as indicated, with \(\varepsilon_{A} = 0.96\varepsilon_{B} \) throughout. Negative or positive value along the vertical axis indicates how much the thermodynamic equilibrium is biased, respectively, toward the GA or GB native state.

(TIFF)

S5 Fig. Free energy landscapes of bi-stable sequences from constant-temperature simulations with a weak SBM potential. Free energy as a function of QA and QB was simulated for GA98 (a) and GB98 (b) at each sequence’s respective \(T_{ms} \) and \(\varepsilon_{B} = -0.25 \). For each sequence, 128 independent trajectories were simulated over \(10^{7} \) Monte Carlo cycles. The free energy for each sequence was computed from the sampled population as a whole after discarding the first 30%
of every trajectory.

S6 Fig. Contributions from different energy terms in the potential function for the hybrid model. Shown here as examples are energies averaged over sampled GB98 conformations in the unfolded state (yellow columns) and in the GB-folded state (green columns) simulated using $\varepsilon_B = -0.37$. The unfolded state is defined by $Q_A \leq 0.6$ and $Q_B \leq 0.3$, the GB folded state is defined by $Q_B > 0.7$. The columns and numbers show the average total energy (E_{total}) and its contributing averages from various energy terms, the error bars mark the ranges of energies sampled. As defined in Methods of main text, E_{SBM} is the dual SBM term $E_A + E_B$, which is seen to have a minor stabilizing contribution (negative value) compared to the sum of transferrable terms such as the torsion-related (E_{local}), hydrogen-bonding (E_{HB}), and hydrophobic (E_{HP}) terms. Because of a large repulsive contribution from the transferrable excluded-volume term (E_{EV}) and an almost neutral contribution from charged side-chain interactions (E_{SC}), the average total energy E_{total} is positive. Further details are provided in Methods of main text and Irbäck et al., 2009 cited in S1 Text.

S7 Fig. Temperature replica exchange simulations of GA98 and GB98 under varying $-\varepsilon_B$, from 0.2 to 0.5. Q_A vs Q_B free energy landscapes obtained after reweighting to the respective T_m. Simulation procedure and plotting style are the same as that described for Fig 3a of main text.

S8 Fig. Dependence of the native state preference $\Delta F(G_A - G_B)$ and melting temperature T_m (inset) on the SBM strength $-\varepsilon_B$ for the simulations of GA98 and GB98 in S7 Fig. Note that the GA fold is always favored more by GA98 than by GB98, whereas the GB fold is always favored more by GB98 than by GA98.

S9 Fig. Free energy landscapes computed using Hamiltonian replica exchange simulations of GA98 with varying $-\varepsilon_B$ among replicas. Simulations were conducted at the constant temperature shown at the top. The landscapes are depicted in the same style as that in S7 Fig.

S10 Fig. Free energy landscapes computed using Hamiltonian replica exchange simulations of GB98 with varying $-\varepsilon_B$ among replicas. Simulations were conducted at the constant temperature shown at the top. The landscapes are depicted in the same style as that in S9 Fig.

S11 Fig. Free energy landscapes computed by simulations of GA98 and GB98 (a) using only the Lund potential without SBM, and (b) with all long-range interactions in the Lund potential turned off, but with the SBM on. In (a), the Q_A and Q_B reaction coordinates were based, respectively, on the 2LHC and 2LHD PDB structures. In (b), $-\varepsilon_B$ was either 0.37 (top) or 1 (bottom). A wide temperature grid was used for temperature replica exchange to sample both folded and unfolded conformations. Free energy in each panel is plotted in units of $k_B T$ according to the scale on the right.

S12 Fig. Free energy landscapes of bi-stable sequences from constant-temperature simulations. Free energy as a function of Q_A and Q_B was simulated for GA98 (a) and GB98 (b) at each sequence’s respective T_m and $\varepsilon_B = -0.37$. For each sequence, 128 independent trajectories
were simulated over 10^7 Monte Carlo cycles. The free energy for each sequence was computed from the sampled population as a whole after discarding the first 30% of every trajectory. This calculation gives $\Delta F(GA_{98}-GB_{98}) = -0.8$ for GA98 and $\Delta F(GA_{98}-GB_{98}) = +0.77$ for GB98.

S13 Fig. Transition fluxes among macroscopic states during Monte Carlo sampling. For this analysis, conformations in the Q_A/Q_B energy landscapes are divided into three (a) or eight (b) macroscopic states. Transition frequencies between these states during Monte Carlo sampling were recorded. Normalized two-way transition frequencies shown here are for (c) GA_{folded} and U (unfolded), GB_{folded} and U (unfolded) in the case of three macroscopic states; (d) all neighboring states, and (e) GA_{folded} and its neighboring transition state as well as GB_{folded} and its neighboring transition state in the case of three macroscopic states (d,e). Data are provided here for all twelve GA/GB sequence variants in (a) and (c); but only for eight variants in (b) for which the transitions of interest were observable during our simulations.

S14 Fig. Conformational diversity in putative transition-state ensembles. Using the same conformational similarity measure for the k-means clustering of all accessible conformations (Methods of main text), a separate clustering of each of the three putative transition states, (a) TS-GA_{A}, (b) TS1-GB_{B}, and (c) TS2-GB_{B}, was performed for the (a) 453, (b) 834, and (c) 805 sampled conformations, respectively, in the yellow boxes in Fig 4 of main text that defined these states. Each of the putative transition states was partitioned into three clusters ($k = 3$). The centroid conformations of the clusters are shown here with the percentages of conformations the clusters encompass.

S15 Fig. Mutation-induced population shift caused by L45Y from GA98 to GB98. Clusters of conformations presented in Fig 4 of main text were further analyzed. The manner in which cluster size and structural elements are represented is the same as that in Fig 4 of main text. Number labels for select clusters are provided. Here “sequence bias” (vertical axis) is defined as $\ln[P(GB_{98})/P(GA_{98})]$, where $P(GA_{98})$ and $P(GB_{98})$ are the fractions of conformations sampled, respectively, from GA98 and GB98 simulations for the given cluster. $\ln[P(GB_{98})/P(GA_{98})]$ is the population shift for a cluster after the L45Y mutation; whereas “fold bias” (horizontal axis), defined as $\ln(Q_{B}/Q_{A})$, is the bias that exists within a given conformational cluster favoring (positive) or disfavoring (negative) GB_{98} over GA_{98}. The native basins of GA_{98} and GB_{98} are depicted, respectively, by blue and red ovals. Centroid conformations are shown for the most GB98- and GA98-enriched conformations in the unfolded state (cluster nos. 28 and 12, respectively), as well as the most GB98- and GA98-enriched in the G_{98} intermediate state (cluster nos. 22 and 17, respectively; see text). Note that cluster no. 12 is likely a kinetic trap because its second β-hairpin is in a non-native orientation, as discussed in conjunction with Fig 4 of main text.

S16 Fig. Shift in unfolded-state contact frequencies caused by the L45Y mutation. The unfolded state is defined by $Q_A < 0.6$ and $Q_B < 0.3$. The criterion for the residue-residue contacts considered here are the same as that for native contacts (Methods of main text). Contact order $\equiv |i-j| + 1$ for a contact between residues i and j. $P(A)$ and $P(B)$ are the fractions, respectively, of GA98 and GB98 unfolded conformations with a given contact. The diameters of the circles representing the contacts are proportional to the overall fractional frequency $[P(A)+P(B)]/2$ of the contact. Circle color is used to distinguish contacts that are nonnative (black), native GA_{98} (blue), native GB_{98} (red), and native GA_{98}+GB_{98} (magenta). The interacting residue pairs are identified for contacts with the largest frequency shifts. Results in this figure were obtained from an equal
number of 1,000 conformations sampled from GA98 and GB98 simulations.

S17 Fig. Difference landscapes for alternate switches. (a) Free energy difference between GB98-T25I,L20A and GB98-T25I (former minus latter) as a function of QA and QB. It is known experimentally that GB98-T25I,L20A adopts the GB fold whereas GB98-T25I adopts the GA fold. (b) The corresponding free energy difference between the predicted switch sequences “S1” (GB fold) and “S2” (GA fold). The free energy landscapes of “S1” and “S2” are given in Fig 7c and 7d of main text.

S18 Fig. Effect of our model π–π interaction for F, Y on the GA/GB conformational switch. Shown here are the QA/QB free energy landscapes of GA98 (a) and GB98 (b) in the modified hybrid model that incorporates the rudimentary π–π interaction defined in Methods of the main text in the model potential’s transferable component. Relative to the corresponding landscapes in the unmodified hybrid model (Fig 3 of main text), the GB basin of the GA98 landscape here (a) is much more depleted than that of the GB98 landscape (b).

S1 Text. Modeling details and related computational studies.

Acknowledgments
We thank Tao Chen, Cristiano Dias, Mitch Kovarik, Justin Lemkul, Régis Pomès, Jianhui Song, Peter Tieleman, Stefan Wallin, and Paul Whitford for discussions. An earlier version of this work was presented by TS at the Society for Molecular Biology and Evolution (SMBE) meeting in Vienna and at the European Biophysical Societies Association (EBSA) meeting in Dresden in 2015; part of this work was also presented by HK at the NSF Protein Folding Consortium 2015 Annual Meeting in Berkeley. We thank the participants of these meetings for helpful feedback. We are grateful to the colleagues at SciNet, Sharcnet, and Calcul Québec of Compute Canada for their assistance and generous allotments of computing resources.

Author Contributions
Conceived and designed the experiments: TS HSC. Performed the experiments: TS HK. Analyzed the data: TS HK HSC. Wrote the paper: TS HSC.

References

59. Cheung MS, Garcia AE, Onuchic JN. Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc Natl Acad Sci USA. 2002; 99: 685–90. PMID: 11805324

64. García AE, Onuchic JN. Folding a protein in a computer: an atomic description of the folding/unfolding of protein A. Proc Natl Acad Sci USA. 2003; 100: 13898–13903. PMID: 14623983

Supporting Information
Theoretical insights into the biophysics of protein bi-stability and evolutionary switches

Tobias Sikosek, Heinrich Krobath, Hue Sun Chan (DOI:10.1371/journal.pcbi.1004960)

S1 Text: Modeling details and related computational studies

Calibration of SBM potential
To construct an appropriate dual-basin SBM, we initially attempted two seemingly most straightforward schemes for linearly combining the SBM potentials for GA and GB (S1 Fig and S2 Fig). They entail either equalizing the total SBM energies for the two native structures, i.e., $E_A = E_B = -n_B$, where without loss of generality n_B may be identified with the number of native contacts in GB, or setting the per-contact energy $\varepsilon_A = \varepsilon_B = -1$ (a constant one may choose to be -1 without loss of generality). In the first case, the per-contact energy of GA is greater, which in combination with the higher conformational entropic contribution of the disordered termini in GA leads to the population being largely concentrated in either the GA basin or the unfolded region (S3 Fig; a,b). In the second case, the GA basin is significantly shallower due to the smaller number of contacts in the GA contact map ($n_A = 95$ whereas $n_B = 137$), resulting in an overpopulation of the GB basin with virtually no population in the GA basin (S3 Fig; c,d).

In view of these exploratory results, it is quite clear that a small imbalance in the two SBM strengths of ~4% in favor of GB would populate both native basins effectively. Structurally, some degree of imbalance is expected from the higher degree of disorder at the termini of GA compared to GB. GB also packs more tightly and has a higher contact order due to its β-rich fold. With these considerations, the native SBM energies (lowest-possible energies) we adopted for most of our simulations were $E_A = 0.96 \varepsilon_B n_A$, $E_B = \varepsilon_B n_B$.

As discussed in the main text, we reduced the SBM potential strengths as much as possible to enhance the contributions from the sequence-specific transferable component of the hybrid model potential while maintaining sufficient native bias to enable folding to both GA and GB (S4 Fig). For instance, at $\varepsilon_B = -0.25$, some degree of folding to GB was seen but folding to GA was not observed, with the unfolded state dominant at T_m (S5 Fig). After exploring a range of values of ε_B between -2.0 and -0.25, the simulation results at $\varepsilon_B = -0.37$ were seen as most consistent with experiment. Unless stated otherwise, simulation results in the main text were obtained using $\varepsilon_B = -0.37$.

SBM potential strength: robustness of predicted switching behavior
While $\varepsilon_B = -0.37$ was chosen for extensive analysis, the general behavioral trend of our model GA/GB system is robust for a reasonably wide range of ε_B values. As apparent in
S4 Fig, the preferences of GA98 and GB98 for the G_A and G_B folds, respectively, are maintained over a range of different ε_B values. A more detailed analysis of this feature of our hybrid model is provided in S7 Fig, where free energy surfaces of GA98 and GB98 computed at their respective T_m are shown for different $-\varepsilon_B$ values, in steps of 0.05, between $-\varepsilon_B = 0.2$ and $-\varepsilon_B = 0.5$. The simulation protocol used here is the same as that in the main text. Both the G_A and G_B native basins are stabilized for $0.3 \leq -\varepsilon_B \leq 0.5$, whereas $-\varepsilon_B < 0.3$ is not sufficient to drive G_A folding. Notably, the G_B intermediate is populated significantly for $-\varepsilon_B \leq 0.4$, but is depleted for higher $-\varepsilon_B$, indicating that the G_B intermediate state predicted by our hybrid model is a consequence of the physical transferrable potential, not the Gō-like SBM. S8 Fig shows further that the difference in $\Delta F(G_A - G_B) = -\ln(P_A/P_B)$ between GA98 and GB98 (see main text) is approximately constant across different SBM strengths for $0.2 \leq -\varepsilon_B \leq 0.5$. Within this range, G_A is always more favored by GA98 (lower ΔF) than by GB98 (higher ΔF), irrespective of the approximate linear increase of T_m with increasing SBM strength $-\varepsilon_B$ (S8 Fig, inset).

Further illustration of this robustness is provided by Hamiltonian replica exchange simulations (Fukunishita et al., 2002). In addition to the temperature replica exchange discussed in the main text --- where temperatures of different replicas are swapped, we have also conducted constant-temperature Hamiltonian replica exchange simulations, wherein different ε_B values within the range 0.25 $\leq -\varepsilon_B \leq 0.50$ were swapped among 32 replicas in accordance with the Metropolis criterion. The results are shown in S9 Fig for GA98 and S10 Fig for GB98 at a constant temperature essentially equal to their T_ms for $-\varepsilon_B = 0.37$. Because the T_ms for $-\varepsilon_B < 0.37$ are lower (S8 Fig, inset), the free energy landscapes in S9 Fig and S10 Fig were under unfolding conditions for $-\varepsilon_B < 0.37$. Thus only unfolded conformations are populated and hence bi-stability is not apparent, even though bi-stability is observed for SBM strengths as low as $-\varepsilon_B = 0.30$ when the free energy landscapes were computed at the T_ms of the given ε_B values (S7 Fig). Conversely, the free energy landscapes in S9 Fig and S10 Fig were under increasingly strong folding conditions for $-\varepsilon_B > 0.37$. Under these conditions, G_A is much more favored over G_B for GA98 (S9 Fig) than for GB98 (S10 Fig). More specifically, GA98 exhibits very little population of the G_B fold for all but the strongest $-\varepsilon_B$ (S9 Fig), whereas GB98 populates both the G_B native and intermediate states substantially for all $-\varepsilon_B > 0.37$ (S10 Fig). This trend is consistent with that observed in S7 Fig and S8 Fig.

While the present hybrid model is rather robust for $0.3 \leq -\varepsilon_B \leq 0.5$, it is instructive to note that the model does not reproduce G_A/G_B behaviors at the two extremes of no SBM ($\varepsilon_B = 0$) or no nonlocal transferrable interactions. The $\varepsilon_B = 0$ failure reiterates the fact that to date no transferrable potential by itself can account for G_A/G_B folding and switching. For $\varepsilon_B = 0$ (transferrable potential only), our model samples secondary-structure-rich conformations with a helical bias [max(Q_A) > max(Q_B)], but the G_A and G_B native states are not visited (S11 Fig; a). For the case in which the transferrable component of the potential is artificially limited to nonlocal atomic excluded volume repulsion and local terms that maintain a protein-like backbone geometry (i.e., nonlocal attractive interactions of the transferrable potential such as hydrogen bonding and hydrophobic interactions are not considered), no folding was observed for $-\varepsilon_B = 0.37$. Moreover, the
low Q_A and Q_B values of the sampled conformations suggest a lack of secondary structure in this model setup (S11 Fig; b, top). At $-\varepsilon_B = 1$, the G_A and G_B folds are substantially populated but so are conformations along the line connecting the two native basins (S11 Fig b, bottom). Hence these free energy landscapes are not bi-stable. It follows from the control simulations in S11 Fig that neither the transferrable Lund potential nor the SBM are individually sufficient to produce the G_A/G_B switching results of our hybrid approach.

Transition flux analysis

To characterize the shift in native stabilities in the G_A/G_B system more comprehensively, we partitioned the Q_A/Q_B free energy landscape into either three (S13 Fig; a) or eight (S13 Fig; b) macroscopic states (lines separating the states are overlaid onto the GB98 landscape as an example in S13 Fig). Replica exchange simulation trajectories, where each trajectory is a temporally ordered list of conformational changes undergone by one protein chain simulated under varying temperature and recorded every 1,000 Monte Carlo cycles, were analyzed for the number of transitions between the macroscopic states. Transition frequencies were normalized for comparison between G_A/G_B sequence variants. In the three-state model, transition frequencies to and from the native states (G_A vs G_B) showed a gradual shift as the sequence varies from G_Awt to G_Bwt (S13 Fig; c). For the eight-state model (S13 Fig; d), transition frequencies are plotted on a log scale (as a visual aid) and only for the eight sequences GA77 to GB77, where all states were populated to some degree. S13 Fig (e) highlights two of these transitions, namely the ones between the native states and their respective neighboring transition state. Here again, the transition frequencies shift along the sequence axis and crossover in between GA98 and GB98. As an internal consistency check of our simulation procedure, these results confirm our free energy calculations indicating a gradual shift in native state preference from G_A to G_B as the sequence varies from G_Awt to non-wildtype G_A/G_B variants and then to G_Bwt.

Possible molecular basis for L45Y-induced structure switch

Because each cluster in Fig.4 is a mixture of GA98 and GB98 and the initial pool of conformations before clustering contained an equal number of GA98 and GB98 conformations, any deviation from a 50/50 ratio in a cluster indicates a population shift due to the mutation. S15 Fig summarizes these shifts. The horizontal “fold bias” variable separates centroids of clusters of conformations similar to G_A (left) from those similar to G_B (right). The vertical “sequence bias” variable separates the relative per-cluster bias of GA98 vs GB98. Clusters with positive or negative values are enriched, respectively, in GB98 or GA98 conformers. A correlation between fold and sequence bias is seen in S15 Fig but there are outliers. All clusters within the G_A native basin (bottom-left, blue) are depleted by L45Y. In contrast, most clusters in the G_B intermediate basin are strongly favored by the same mutation (clusters nos. 6, 18, 13, 22; except cluster 17, see below). The same is true for clusters around TS2-G_B (cluster nos. 29 and 37). One important exception, however, is the largest, most G_B-like native cluster that lies on the horizontal axis (cluster no. 4). This result indicates that according to the transferrable potential here, L45Y favors the G_B-like native intermediates even more than the G_B native fold itself.
The centroid structures of those clusters in the unfolded state or close to TS1-GB that are most enriched in GB98 conformations (cluster no. 28) or GA98 conformations (cluster no. 12) are shown to the left of the vertical axis in S15 Fig. They all feature the second β-hairpin that hosts the mutated Y45, which favorably interacts with F52 on the opposite strand. This observation on unfolded clusters suggests that L45Y likely has a GB-biasing effect even in the early stages of folding. Interestingly, the kinetically trapped version of the second β-hairpin in the centroid of cluster no. 12 is more favored by GA98 than by GB98 sequences.

We further characterize the L45Y-induced drive toward GB by quantifying the bias in contact statistics in the entire unfolded state (all conformations with $Q_A < 0.6$ and $Q_B < 0.3$). The aromatic-aromatic Y45-F52 interaction stands out as the one affected most by the L45Y substitution. This contact is more frequent in GB98 compared to GA98 conformations by more than 4%. In contrast, the $i,i+4$ helical contact K46-L50 is favored in GA98 compared to GB98 conformations by about 4%. Further details of this analysis are provided in S16 Fig.

The centroid conformations of the two most sequence-biased clusters (nos. 17 and 22) in the GB intermediate basin are shown in S15 Fig. Cluster no. 22 is most biased toward GB98. Both β-hairpins are formed in its centroid; and the conformations in this cluster closely resemble those in TS2-GB (Fig.4 of main text). In contrast, cluster no. 17 is most biased toward GA98. This cluster is a clear outlier in that its conformational population is biased towards GA98 conformers (negative vertical value) although its contact pattern is biased toward the GB fold (positive horizontal value). Notably, only the first but not the second β-hairpin is formed in the centroid of this cluster, although stabilizing interactions in the second β-hairpin are important in the formation of the GB fold. The ambivalence in sequence-structure relationship in this cluster underscores once again the bi-stable nature of the GA98 and GB98 sequences.

Related computational studies

It is instructive to compare and contrast our model predictions with computational results in the literature on GA and GB folding. A brief summary of select studies is provided below.

Extensive simulations of coarse-grained chain models have long been performed on GBwt (commonly referred to as protein GB1 or Protein G). The insights they provided into the folding process and their structural characterization of possible intermediate and transition states are of interest. An early Cα Gō-model predicted that GBwt folding is two-state (Karanicolas and Brooks, 2002). In an all-atom Gō-model simulation of GBwt performed around the same time, the major folding pathway was seen to involve an interaction between the helix and the first β-hairpin whereas alternative pathways, including the ones more similar to that suggested by our present GA98/GB98 simulations, have low probabilities (Shimada and Shakhnovich, 2002). However, a subsequent study using a simplified Cα chain model with a physics-based transferable potential found two alternative pathways of GBwt folding: a two-state transition via the interaction of the helix and the second β-hairpin, and a three-state transition where a third β-strand is added and forms a stable intermediate (Brown and Head-Gordon, 2004). Both pathways are similar to what we observed for GA98/GB98 folding (Fig.4 of main text, and S14 Fig).
A subsequent study using a coarse-grained Ca+Cβ (two beads per residue) found that the first major event along the GBwt folding pathway is the formation of the second β-hairpin with strong aromatic interactions and its temperature-dependent association with the helix. The third step is the association of the first and fourth β-strands followed by incorporation of the Y3 residue into the hydrophobic core consisting of aromatic sidechains, resulting in a “fluctuating native-like globule” (Kmieciak and Kolinski, 2008).

Unfolding simulations on the Gα/Gβ system have also been conducted. An all-atom explicit-water molecular dynamics study of high-temperature unfolding of GA59 and GB59 – a sequence pair that share 59% amino acid identity – suggested that the second β-hairpin forms early during GB59 folding and associates with the central helix, a process that appears to prevent folding into Gα-like structures (Scott and Daggett, 2007). Nonlocal hydrophobic interactions between aromatics were found to serve an important role in this process. The early unfolding transition state they identified (see Scott and Daggett, 2007, Fig. 8 therein) has lost the hydrogen bonds between the first and second β-strands, similar to some of the conformations in our Gβ intermediate state (e.g. cluster no. 22 in Fig. 4 of main text) and TS2-Gβ (Fig. 4 of main text and S14 Fig). They also found that the second β-hairpin was kinetically more stable against unfolding than the first β-hairpin. A subsequent joint experimental-computational study that also involved all-atom explicit-water molecular dynamics simulations of high-temperature GBwt (GB1) unfolding identified intermediate- and transition-state conformations as well (Morrone et al., 2011a, Fig 6 therein). These authors concluded that GBwt folding is not two-state, but they also stated that the partially folded state identified in their work did not accumulate and therefore was distinct from the intermediate states suggested by previous studies (Morrone et al., 2011a). An explicit-water molecular dynamics simulation of mechanical unfolding of GBwt suggested that the second β-hairpin tends to form early during the folding process as well (Wu et al., 2012).

In conjunction with experiment, all-atom explicit-water molecular dynamics simulations of the disordered unfolded states of the GA88/GB88 pair of sequence variants suggested that GB88 has higher helical content in its unfolded state than GA88 despite the helical folded structure of GA88. Moreover, sidechain hydrogen bonds in the GB88 unfolded ensemble were found to stabilize the second β-hairpin (Morrone et al., 2011b). A recent metadynamics study based on NMR data on protein GB3 (which differs from GBwt by only seven amino acids; see PDB:2OED) also found that “the second β-hairpin represents the initial native element in the folding process” (Granata et al., 2013).

A more recent sequence design study of the Gα/Gβ system predicted that the N- and C-terminal regions of the protein are most sensitive to mutations and thus likely to harbor “switch” substitutions like L45Y that leads from GA98 to GB98 (Chen et al., 2016). Their emphasis on the importance of the termini region echoes our transition state analysis, which suggests that the first putative bottleneck for Gβ folding, TS1-Gβ (Fig. 4, main text), often entails antiparallel alignment of the termini (see the two most frequent representatives of TS1-Gβ in S14 Fig).
All the results outlined above are in broad agreement with our findings, based on an analysis of the present GA98/GB98 simulations, that the second β-hairpin forms early in Gβ folding. In contrast, all-atom pure SBM (Whitford et al., 2009) simulations found instead that GB folding is seeded by the first β-hairpin. Langevin dynamics simulations based on these models for GA95/GB95 and GA98/GB98 also did not find any stable intermediate along the Gβ folding pathway (Kouza and Hansmann, 2012; Sutto and Camilloni, 2012). These differences in results between models with a physical transferable potential (e.g. common molecular dynamics force fields) or a hybrid potential with a transferable component on one hand and pure SBM on the other are likely caused in part by the lack of favorable nonnative interactions in the pure SBM models. For example, the Gβ intermediate is less populated for the $\varepsilon_B = -0.5$ cases in S7 Fig with a reduced transferrable interaction strength. In contrast, our simulations at $\varepsilon_B = -0.37$ frequently sampled nonnative contacts. Among the unfolded-state contacts most impacted by the L45Y mutation (S16 Fig), some nonnative contacts (black circles) are seen to respond to the mutation with a significant shift in favorability.

Possibility of a kinetic trap in Gβ folding

Our simulations suggested a kinetic trap in the Gβ folding pathway that features an inverted second hairpin (cluster no. 12 in S15 Fig and the 32.4%-populated TS1-Gβ and 19%-populated TS2-Gβ cluster centroid conformations in S14 Fig). While the sensitivity of this prediction to variation of model parameters remains to be ascertained, it is worth considering whether such “mirror image” conformations could potentially exist in general. An early high-coordination lattice model study succeeded in intentionally creating the mirror image of protein A by mutations (Olszewski et al., 1996). More mirror-image conformations of helical proteins were reported as well in subsequent investigations (Liwo et al., 1999; Yang et al., 2007). More recently, Onuchic and coworkers (Noel et al., 2012) as well as Scheraga and coworkers (Kachlishvili et al., 2014) have emphasized that mirror-image conformations with secondary structure and tertiary contacts similar to a native structure may sometimes compete with the true native state. In particular, in one of these simulation studies it was demonstrated that metastable mirror-image conformations of the native structure could exist for protein A (i.e. GAwt) and that the two alternative folds are energetically similar (Kachlishvili et al., 2014). Further examples of mirror images of native structures in molecular dynamics simulation were reported for the three-helix bundle αβ W (Shao, 2015). In fact, mirror-image conformations have long been noted in computational structure prediction and NMR refinement, but they have largely been treated as artifacts of a nonoptimal energy function (Pastore et al., 1991; Skolnick et al., 1997; Zhang, 2009). Since the native structure and its mirror image may share many characteristics, experimental probes with low spatial resolution such as circular dichroism may not always be able to resolve them. Ultimately, whether or not true mirror-image conformations of native structures exist, and their prevalence if they do, are questions that need to be settled by further experiments.

Are current experimental techniques sufficiently sensitive to distinguish between the alternative Gβ β-strand orientations seen in the present simulations? A recent experimental and simulation study on the five-helix-bundle protein λ_{5-85} describes an off-
pathway trapped state with high native contact fraction (Q=0.7) by using multiple fluorescence markers (Prigozhin et al., 2015). In the future, similar techniques may also be applied to β-rich proteins such as GBwt and its variants. In the folding simulations of GB98 presented here, we only observed mirror images of the intermediate state but not the native state. As it stands, it is an open question whether three-state folding reported for several GB variants (Giri et al., 2012) can be explained in part or in its entirety by a kinetically trapped mirror-image intermediate because it might be difficult for common experimental probes to distinguish such trapped states from a native-like intermediate.

The mirror-image Gβ intermediate encountered in our simulations arises from an alternative form of the second β-hairpin. Of relevance here are several computational investigations on the possible occurrence of misfolded states in this hairpin of GBwt (GB1). An early implicit-solvent Monte Carlo simulation study of the 16-residue second β-hairpin region of GBwt found that the Y45-F52 interaction forms early, and that the peptide can form a significant number of nonnative hairpins (Dinner et al., 1999). Further theoretical information is available from subsequent molecular dynamics simulations of the second β-hairpin region in isolation, which has been found in some studies to populate a misfolded hairpin (one strand flipped relative to the other) that has to first unfold before it can proceed toward the correctly folded β-hairpin (Best and Mittal, 2011; Hatch et al., 2014). In another study, a completely misfolded hairpin similar to that in our mirror-image intermediate was found among other misfolded conformations (Pietrucci and Laio, 2009). The prediction of misfolding is not universal, however, as another computational study did not encounter misfolded structures (Juraszek and Bolhuis, 2009). Taken together, these molecular dynamics results on isolated peptides suggest strongly that misfolded second β-hairpins of GBwt do occur, albeit not always in the mirrored configuration found in our trapped intermediates. However, tertiary contacts between the β-hairpin with other parts of GBwt outside the hairpin could facilitate clustering of hydrophobic residues of the hairpin on the “wrong” side in the full Gβ structural context.

In any event, potential difficulties in identifying the misfolded hairpin in simulation can be caused by the choice of reaction coordinates. On one hand, backbone RMSD, or the fraction of native hydrogen bonds may group a misfolded hairpin with other unfolded-state structures. On the other hand, some studies may count the misfolded hairpins as native or native-like when using the secondary structure content or the fraction of native contacts formed (Q) as reaction coordinate.
S1 Text References

Karanicolas, J., Brooks, C.L., 2002. The origins of asymmetry in the folding

Supporting figures

S1 Fig. Multi-well Gaussian contact potentials for 95 consensus G\textsubscript{A} native contacts. The contacts are numbered arbitrarily from 1 to 95. Residue pairs of the contacts are in parentheses. Here contact energy \(E_{ij} \) (in units of \(\epsilon \)) is a function of C\textalpha-C\textalpha distances \(r_{ij} \) (in Å). For each contact, a single Gaussian multi-well potential derived from the corresponding C\textalpha-C\textalpha distances \(d_{ij}(s) \) in the PDB structures of four GA sequences is in blue. For comparison, four separate Lennard-Jones (LJ) potentials \(4\epsilon[(d_{ij}^{6}/r_{ij})^{12} - [(d_{ij}^{6}/r_{ij})^{6}] \) with the same native C\textalpha-C\textalpha distances and well depth \(\epsilon \) are shown in red, and the linear combination of the four Lennard-Jones potentials \(\Sigma_4 \epsilon[(d_{ij}^{6}/r_{ij})^{12} - [(d_{ij}^{6}/r_{ij})^{6}] \), each with well depths scaled down to \(\epsilon/4 \), is in green. Details of our construction of multi-well Gaussian contact potentials are given in *Methods* of main text.
S2 Fig. Multi-well Gaussian contact potentials for 137 consensus G_{B} native contacts. Same as S1 Fig but here the potentials were derived from the known folded structures of four GB sequences.
S3 Fig. Effect of SBM strengths on simulated free energy landscapes in the hybrid model. Free energy as function of Q_A and Q_B was computed using replica exchange for GA98 (left) and GB98 (right) for different ratios of SBM energies for G_A and G_B at the different models’ respective T_ms, with $\epsilon_B=-1$ throughout. (a,b) The G_A and G_B SBM basins have the same minimum energy, viz., $\min(E_A) = \min(E_B)$. (c,d) The individual native contact strengths in G_A and G_B are identical, i.e., $\epsilon_A=\epsilon_B$.
S4 Fig. Sequence-dependent native preference $\Delta F(G_A-G_B)$ at the models’ respective T_ms for four different SBM strengths ε_B. Results for the $-\varepsilon_B$ values tested are shown in different color as indicated, with $\varepsilon_A=0.96\varepsilon_B$ throughout. Negative or positive value along the vertical axis indicates how much the thermodynamic equilibrium is biased, respectively, toward the G_A or G_B native state.

S5 Fig. Free energy landscapes of bi-stable sequences from constant-temperature simulations with a weak SBM potential. Free energy as a function of Q_A and Q_B was simulated for GA98 (a) and GB98 (b) at each sequence’ respective T_m and $\varepsilon_B=-0.25$. For each sequence, 128 independent trajectories were simulated over 10^7 Monte Carlo cycles. The free energy for each sequence was computed from the sampled population as a whole after discarding the first 30% of every trajectory.
S6 Fig. Contributions from different energy terms in the potential function for the hybrid model. Shown here as examples are energies averaged over sampled GB98 conformations in the unfolded state (yellow columns) and in the G_B-folded state (green columns) simulated using $\varepsilon_B=-0.37$. The unfolded state is defined by $Q_A \leq 0.6$ and $Q_B \leq 0.3$, the G_B folded state is defined by $Q_B > 0.7$. The columns and numbers show the average total energy (E_{total}) and its contributing averages from various energy terms, the error bars mark the ranges of energies sampled. As defined in *Methods* of main text, E_{SBM} is the dual SBM term $E_A + E_B$, which is seen to have a minor stabilizing contribution (negative value) compared to the sum of transferrable terms such as the torsion-related (E_{local}), hydrogen-bonding (E_{HB}), and hydrophobic (E_{HP}) terms. Because of a large repulsive contribution from the transferrable excluded-volume term (E_{EV}) and an almost neutral contribution from charged side-chain interactions (E_{SC}), the average total energy E_{total} is positive. Further details are provided in *Methods* of main text and Irbäck et al., 2009 cited in S1 Text.
S7 Fig. Temperature replica exchange simulations of GA98 and GB98 under varying $-\epsilon_B$, from 0.2 to 0.5. Q_A vs Q_B free energy landscapes obtained after reweighting to the respective T_m. Simulation procedure and plotting style are the same as that described for Fig.3a of main text.
S8 Fig. Dependence of the native state preference $\Delta F(G_A - G_B)$ and melting temperature T_m (inset) on the SBM strength $-\epsilon_B$ for the simulations of GA98 and GB98 in S7 Fig. Note that the G_A fold is always favored more by GA98 than by GB98, whereas the G_B fold is always favored more by GB98 than by GA98.
S9 Fig. Free energy landscapes computed using Hamiltonian replica exchange simulations of GA98 with varying $-\varepsilon_6$ among replicas. Simulations were conducted at the constant temperature shown at the top. The landscapes are depicted in the same style as that in S7 Fig.
S10 Fig. Free energy landscapes computed using Hamiltonian replica exchange simulations of GB98 with varying $-\epsilon_B$ among replicas. Simulations were conducted at the constant temperature shown at the top. The landscapes are depicted in the same style as that in S9 Fig.
S11 Fig. Free energy landscapes computed by simulations of GA98 and GB98 (a) using only the Lund potential without SBM, and (b) with all long-range interactions in the Lund potential turned off, but with the SBM on. In (a), the Q_A and Q_B reaction coordinates were based, respectively, on the 2LHC and 2LHD PDB structures. In (b), $-\varepsilon_B$ was either 0.37 (top) or 1 (bottom). A wide temperature grid was used for temperature replica exchange to sample both folded and unfolded conformations. Free energy in each panel is plotted in units of $k_B T$ according to the scale on the right.
S12 Fig. Free energy landscapes of bi-stable sequences from constant-temperature simulations. Free energy as a function of \(Q_A \) and \(Q_B \) was simulated for GA98 (a) and GB98 (b) at each sequence’s respective \(T_m \) and \(\epsilon_B = -0.37 \). For each sequence, 128 independent trajectories were simulated over \(10^7 \) Monte Carlo cycles. The free energy for each sequence was computed from the sampled population as a whole after discarding the first 30% of every trajectory. This calculation gives \(\Delta F(G_A - G_B) = -0.8 \) for GA98 and \(\Delta F(G_A - G_B) = +0.77 \) for GB98.
S13 Fig. Transition fluxes among macroscopic states during Monte Carlo sampling. For this analysis, conformations in the Q_A/Q_B energy landscapes are divided into three (a) or eight (b) macroscopic states. Transition frequencies between these states during Monte Carlo sampling were recorded. Normalized two-way transition frequencies shown here are for (c) G_A (folded) and U (unfolded), G_B (folded) and U (unfolded) in the case of three macroscopic states; (d) all neighboring states, and (e) G_A and its neighboring transition state as well as G_B and its neighboring transition state in the case of three macroscopic states (d,e). Data are provided here for all twelve GA/GB sequence variants in (a) and (c); but only for eight variants in (b) for which the transitions of interest were observable during our simulations.
S14 Fig. Conformational diversity in putative transition-state ensembles. Using the same conformational similarity measure for the k-means clustering of all accessible conformations (Methods of main text), a separate clustering of each of the three putative transition states, (a) TS-G_A, (b) TS1-G_B, and (c) TS2-G_B, was performed for the (a) 453, (b) 834, and (c) 805 sampled conformations, respectively, in the yellow boxes in Fig.4 of main text that defined these states. Each of the putative transition states was partitioned into three clusters ($k=3$). The centroid conformations of the clusters are shown here with the percentages of conformations the clusters encompass.
Mutation-induced population shift caused by L45Y from GA98 to GB98.

Clusters of conformations presented in Fig. 4 of main text were further analyzed. The manner in which cluster size and structural elements are represented is the same as that in Fig. 4 of main text. Number labels for select clusters are provided. Here “sequence bias” (vertical axis) is defined as \(\ln \left(\frac{P(GB98)}{P(GA98)} \right) \), where \(P(GA98) \) and \(P(GB98) \) are the fractions of conformations sampled, respectively, from GA98 and GB98 simulations for the given cluster. \(\ln \left(\frac{P(GB98)}{P(GA98)} \right) \) is the population shift for a cluster after the L45Y mutation; whereas “fold bias” (horizontal axis), defined as \(\ln \left(\frac{Q_B}{Q_A} \right) \), is the bias that exists within a given conformational cluster favoring (positive) or disfavoring (negative) \(G_B \) over \(G_A \). The native basins of \(G_A \) and \(G_B \) are depicted, respectively, by blue and red ovals. Centroid conformations are shown for the most GB98- and GA98-enriched clusters in the unfolded state (cluster nos. 28 and 12, respectively), as well as the most GB98- and GA98-enriched in the \(G_B \) intermediate state (cluster nos. 22 and 17, respectively; see text). Note that cluster no. 12 is likely a kinetic trap because its second \(\beta \)-hairpin is in a nonnative orientation, as discussed in conjunction with Fig. 4 of main text.
S16 Fig. Shift in unfolded-state contact frequencies caused by the L45Y mutation. The unfolded state is defined by $Q_A<0.6$ and $Q_B<0.3$. The criterion for the residue-residue contacts considered here are the same as that for native contacts (Methods of main text). Contact order $\equiv |i - j| + 1$ for a contact between residues i and j. $P(A)$ and $P(B)$ are the fractions, respectively, of GA98 and GB98 unfolded conformations with a given contact. The diameters of the circles representing the contacts are proportional to the overall fractional frequency $[P(A)+P(B)]/2$ of the contact. Circle color is used to distinguish contacts that are nonnative (black), native G_A (blue), native G_B (red), and native G_A+G_B (magenta). The interacting residue pairs are identified for contacts with the largest frequency shifts. Results in this figure were obtained from an equal number of 1,000 conformations sampled from GA98 and GB98 simulations.
S17 Fig. Difference landscapes for alternate switches. (a) Free energy difference between GB98-T25I,L20A and GB98-T25I (former minus latter) as a function of Q_A and Q_B. It is known experimentally that GB98-T25I,L20A adopts the G_B fold whereas GB98-T25I adopts the G_A fold. (b) The corresponding free energy difference between the predicted switch sequences “S1” (G_B fold) and “S2” (G_A fold). The free energy landscapes of “S1” and “S2” are given in Fig.7c,d of main text.

S18 Fig. Effect of our model π-π interaction for F, Y on the G_A/G_B conformational switch. Shown here are the Q_A/Q_B free energy landscapes of GA98 (a) and GB98 (b) in the modified hybrid model that incorporates the rudimentary π-π interaction defined in Methods of the main text in the model potential’s transferable component. Relative to the corresponding landscapes in the unmodified hybrid model (Fig.3 of main text), the G_B basin of the GA98 landscape here (a) is much more depleted than that of the GB98 landscape (b).